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Introduction 

This tutorial contains basic material - familiar to many. This will be used as a fpundation 
upon which we will build - bringing forth some new material and equations that have been 
developed especially for this tutorial. These will provide increased understanding toward 
parameter estimation of clock aqd clock system's performance. 

There is a very important ITU Handbook being prepared at this tim; which goes much further 
than this tutorial has time to do. I highly recommend it as an excellent resource document. Thc 
final draft is just now being completed, and it should be ready late in 1996. It is an outstanding 
handbook; Dr. Sydnor proposed it to the ITU-R several years ago, and is the editor with my 
assistance. We have some of the best contributors in the community from around the world 
who have written the ten chapters in this handbook. The title of the Handbook is, "Selection 
and use of Precise Frequency and Time Systems." It will be available from the ITU secretariat 
in Geneva, Switzerland, but NAVTEC Seminars also plans to be a distributor. 

Definitions and Concepts 

If we ask the very simple question, "What is a clock?" We discover that essentially all clocks 
can be considered two-part devices: a resonator or frequency source and counter or divider for 
keeping track of the number of oscillations. As an example, we have the definition of a second: 
when 9,192,631,770 oscillations occur of the photon associated with the quantum ground-state 
of the cesium-133 atom, we have a second. The electronics for counting are more sophisticated 
than for the ordinary clock, but the concepts are the same. 

Given this concept, it is important to remember that the counter (divider) will always deteriorate 
the signal. In other words, the phase noise of the sine wave of the source, for exarnpl~, 
will be more stable than the clock's output. We will come back to this when we talk about 
measurement noise and optimization algorithms. 

Cmnsider another very important concept: If we have two clocks, we feel obligated to ask the 
question, which is correct under the basic statistical theorem that every clock disagrees with 



every other clock? The disagreement may be very small, but they will always disagree except at 
most an instant. In fact, you can make the very strong statement that it is impossible to have 
two clocks perfectly synchronized, except at an instant, because of noise. So, you can never 
have two clocks perfectly synchronized on a continuous basis. 

In a fundamental sense, what is the difference between frequency and time? We can talk about 
frequency in an absolute sense as in the definition of the second. Time is not absolute. It 
is an artifact - depending on when we set the integrator as we started counting seconds, for 
example. Independently, a frequency standard built in Braunschweig, Germany will agree with 
one built in Boulder, Colorado within their accuracy limits because they are based on the same 
fundamental phenomena within physics. 

Time, on the other hand, depends upon when you set the integrator for counting the seconds. 
Hence, two clocks may be arbitrarily different in their readings. There is no absolute time with 
which to compare a clock. 

Figure 5 compartmentalizes the perceived causes of clock deviations into four areas: 

a 1) How we process the data is very important. Clock performance can be made worse 
by improper processing. 

2) The measurement noise limits our ability to see the true performance of a clock. A 
classic example is GPS SA. If it were turned off, the venetian blinds would go up, and 
we would be able to see the GPS satellite clocks very clearly. The measurement noise 
should always be considered; it may be negligible compared to the clock noise, but often 
it is not. 

3) Every clock has intrinsic mechanisms which perturb its output time. By nature it is 
convenient to have two sub-categories for the intrinsic clock perturbations - typically 
denoted by the random variations and by the systematic variations. Random and systematic 
variations also occur in measurement systems as well as in the environmental perturbations. 
The environment perturbations can look like a random process, depending upon how it 
couples into the clock. And 

4) the environmental perturbations often adversely impact the long-term performance of a 
clock. Clearly, it is desirable to design to minimize the environmental perturbing effects. 

Let us now review some fundamental clock concepts (see Figure 6) A working definition of 
time is the apparent reading of a clock. Synchronization is to have two or more clocks with 
the same apparent time reading. In principle, this has to be within some level of uncertainty 
since every clock disagrees with every other clock except at most an instant. Syntonization is to 
have two or  more clocks with the same apparent rate. In the telecommu~cation industry, they 
word "synchronization" is often used when, in fact, what is meant is "syntonization." These 
are two different useful concepts, and if used properly can help avoid a lot of confusion in 
specifications and in system performance descriptions. Syntonization also needs to be specified 
with an uncertainty. 



Simultaneity doesn't rsally require a clock. Here two or more events occur at the same moment, 
as perceived in some reference frame. 

The environmental elements which we often see that perturh clocks are listed in Figure 7. This 
list contains some of the more important ones. One of the fundamental breakthroughs wit'> 
the HP model 5071A cesium clock is that by active electronic control and feedback the effect 
of the environment can be greatly reduced. This approach has improved the long-term stability 
by more than an order of magnitude over other models. 

There is a new IEEE standard, 1193-1994, which gives guidelines for the measurement of 
environmental sensitivities. Later, we will use some of the messages from this standard. This 
standard is another good reference document. The place to order it is shown in Figure 8. 

Measurement Models, Terminology and Concepts 

Figure 9 shows the usual model for an oscillator's output. The frequency, v(t) ,  always varies 
with time; hence, its period, r( t ) ,  also varies. One of our main goals in this tutorial is to 
clearly and in a parsimonious way quantify these variations so that there is good communication 
between the vendor and the user, and so that the designer or  planner may work effectively 
and efficiently. The output need not always be a sine wave. The following~characterization 
procedures have been kept general enough to work as well for squarL wave or for any periodic 
signal. But since sine waves are fundamental to nature, this is the common representation. 

Using the sine-wave as a conceptual model, we usually have a nominal frequency at which the 
standard is designed to work, I /& By definition it does not vary with time. We then use 4(t) to 
denote all the phase variations around the nominal accumulated phase, 'lnr/ot. The cycles of an 
oscillator are counted to create a clock. Again, the divider noise will degrade the signal from 
the oscillator. Hence, without some special filtering, the integrated clock noise will always be 
greater than the integrated oscillator noise. 

As illustrated in Figure 10, what is measured in practice is never the time of a clock, since we 
have no absolute reference with which to measure it alone. What, in fact is measured is the time 
difference between two clocks. The time difference can be measured with arbitrary precision. 
Today there exists instrumentation which can measure time differences at the femtosecond level 
using the carrier phase. 

Figure 11 shows the normalized representation of frequency offset y(t). This is a dimensionless 
quantity which is simply defined as the free-running frequency, ~ ( t )  of the clock, minus its 
nominal frequency, r/o, all divided by the nominal frequency. Even though this is a conceptual 
value, in practice it is very useful because vo can be the reference oscillator of the pair being 
measured. In addition, there is the big advantage that y(t) is a srnall number compared to 
i t )  Conceptually y(t) represents the offset from the ideal. It is oft:n referred to as parts in 

for example, or  equivalently 1 x 10-lo. 

On the other hand, the time offset, x(t) ,  is the exact integral of the frequency offset, y(ti), 
integrated from 0 to t. It also can be written exactly in terms of the 4(t)  shown in Figure 9, 
x(t) = $$$. We often talk about time deviations or phase deviations interchangeably, and since 



they are directly proportional this is okay. 

Because of the integral relatio~ship shown in Figure 11, the fractional frequency offset, y(t) is 
the time derivative of the time offset. Hence, the slope on a phase plot is proportional to the 
frequency offset. 

Figure 12 gives a simple parsimonious model for the time offset or  time error of a clock. The 
first term represents the synchronization error, XO.  The second term contains the syntonization 
error, yo. It gets multiplied by the running time to calculate its effect on the total time error. 
The third term contains the linear frequency drift. Its dimensions will be fractional frequency 
change per unit time interval, per second or per day, as examples. All of the rest of the 
deviations are included in ~ ( t ) .  Here, we often hide a multitude of sins! This last tern,  
for example, could represent all of the effects due to environmental perturbations while also 
containing the random noise deviations. In addition, it may contain side-band components due 
to diurnal effects, or  to modulation or RFI. 

If we subtract off the effects of the first three systematic terms, then x(t)  = ~ ( t ) .  Analyzing 
these residuals is very helpful in diagnosing the effects of the random and other perturbations 
on the clock. Once the level and kind of random perturbations are known, then optimum 
estimation procedures can be used to better estimate the systematic effects as well as being 
able to calculate optimum predictions, for example. 

Taking the derivative of the model equation in Figure 12 yields: y(t) = yo + Dt. + t(t).  Writing 
the equation this way will be useful later as we get into optimum parameter estimation. 

Frequency and Time Accuracy and Stability 

Figure 13 shows an example of two very simple systematic situations: a positive frequency 
offset, and a negative frequency drift. The first drawing illustrates y(t) and the second one its 
integral, x(t). The constant frequency offset turns into a ramp for the time error, and the drift 
into a quadratic. We assume the same synchronization error (consta.J of integration) for both 
situations. 

In 1988, IEEE Standard 1139-1988 was published providing a recommended set of measures 
for time and frequency characterization. Figure 14 gives some of those measures from this 
standard. The exception is u,(T), as it had not been developed at that time. Subsequently, it 
has been adopted by the telecommunications community and by the ITU-R. As we need them, 
we will describe the functionality of some of these measures. 

Figure 15 gives some time-domain definitions and some useful measures. For example, y(t) is 
a direct indicator of frequency accuracy if the reference, "0, is the definition of an agreed upon 
standard. Similarly, x( t )  is a direct indicator of the time inaccuracy if it is taken with respect 
to UTC, which is the correct time by definition. The other three sigma measures shown are 
for determining the level and kind of instabilities, as will be shown later. 

As was mentioned before, the design of the relatively new HP 5071A cesium-beam clock was 
for increased awilracy and improved immunity to environmental perturbations - resulting in 



greatly improved long term stability. Figure 16 is a histogram of ~ ( t )  for the 94 HP 5071A 
clocks wntributing to TAWTC during 1994. Figure 17 shows the 311 total participating clocks 
during 1994 plotted with the same abscissa. It is apparent that the design goals have nicely 
been met. The accompanying paper gives more details as well as documenting the performance 
of TAUUTCIII. The introduction of the HP 5071A clocks, as Dr. Thomas has pointed out, is 
having a major impact toward improving the performance of International Atomic Time. 

In both Figures 16 and 17 the mean is significantly larger than the standard deviation of the 
mean. So in both cases the standards would not be considered in statistical control. Hence, 
the need for primary standards, so that calibrations with same can provide frequency accuracy; 
i.e. agreement with the definition of the second. 

Figure 18 a frequency stability diagram - using u,(T) - showing the range of values available 
for most of the important clocks to our community. This stability diagram is taken from an 
ITU-R document giving the characteristics of these clocks[21. QZ stands for quartz crystal 
oscillators, RB stands for rubidium-gascell frequency standards, CS stands for cesium-beam 
frequency standards, and HM stands for hydrogen-maser frequency standards. For CS stabilities, 
an extended line has been drawn in representing the improved long-term frequency stability of 
the relatively new HP 5071As. 

Figure 19 is a plot of the time accuracy of three time scales over the last approximately 200 days: 
UTC(NIST), UTC(OP), and UTC(USN0-MC). These three time scales are taken with respect 
to UTC, the official time for the world. By definition, how well a clock agrees with UTC is a 
measure of its true time accuracy. All three have been within nominally 100 nanoseconds for 
about the last half year. The time accuracy of many of the worlds time scales have improved 
significantly over the last three years. This has been primarily driven with the introduction of 
the HP 5071As into these sundry time scales. 

One of the most significant challenges that a timing center has toward time accuracy is in 
predicting where UTC will be at the current time, because UTC is calculated and distributed 
about one and one-half months after the fact. Each country maintains its own real-time 
estimate of UTC - denoted UTC(i) for the ith timing center. Clearly, if UTC were available in 
real-time, it would be far simpler to have a high-level of time accuracy. Through international 
cooperation, this direction is being pursued. 

The limiting noise for the cesium clocks contributing to TAUUTC is white-noise FM. The 
optimum RMS prediction error for this noise is T,u,(T,), where T, is the prediction interval. 
For the USNO data over the last half of year, the RMS error is 6 ns. This is not the same as 
the standard deviation; the 6 ns is with respect to the truth, which is UTC by definition. 

An RMS error of 6 ns with 7, = about 45 days implies that o,(T,) 5 1.5 x lo-'" since any 
prediction algorithm cannot be better than optimum. If the USNO rime scale and UTC were 
independent, then this number would be directly related to the square root of the sum of the 
variances from each scale. The weight of the USNO clocks contributing to TAIIIITC is abou: 
40 percent. The effect of the bias of a time scale contributing is given approximately by 1/(1 - 
weight). Hence, we can conclude that either of the two time scales is equal to or better than 
2.6 x 10- 'h t  T = 45 days, and one of the scales is better than this number divided by 4, or 



than 1.8 x 

This level of stability represents a major advancement during the last three or four years. 
And again, it wmes mainly as a result of the introduction of the HP 5071A clocks with their 
excellent environmental insensitivity. One would also conclude that the prediction algorithm 
used by USNO is very close to optimum. 

Random Processes, Models and Measures 

Characterizing the random deviations in a clock's performance allows us to determine the 
noise type. p o w i n g  the type of noise then allows 11s to design optimum parameter estimation 
procedures. Figure 20 illustrates twb very important types of noise. Since one flip of a coin 
is independent of the next flip, a series of flips generates a random and uncorrelated series. 
In other words, a flip of heads at one point in time has no bearing on whether the coin will 
come up heads or tails at another time. The spectral density of these flips is then a white-noise 
process. 

We can integrate these flips by taking one step forward with heads and one step backwards with 
tails. Our displacement from the origin is now a random-walk process and has an f-2 spectral 
density. These same arguments are very analogous as to why the random time deviations 
out of most atomic clocks are a random-walk process. The atomic-clock servo hunts for the 
resonance frequency being limited by white noise in the search; the integral of these white 
frequency deviations generates a random-walk in the time deviations. Vice-versa, if a derivative 
or first difference is taken of random-walk time deviations, the process turns into one with a 
white-noise spectrum. 

The HP 5071A is an excellent example of a clock with classical white-noise frequency spectrum 
over many decades of Fourier space. This kind of noise causes u,(T) to go as T - ' / ~ ,  and 
for the high-performance model of this clock the white-noise behavior extends from about 10 
seconds to as long as lo7 seconds in some cases with a performance specification given by the 
top equation in Figure 21. Such behavior results in long-term stabilities well below 1 x 10-14. 

As also illustrated in Figure 21, whereas white-noise FM is the ideal classical noise for most 
atomic clocks, white PM is the ideal classical measurement noise. That measurement noise 
can, of wurse, contribute to c ( t )  in the general model equation for the time error between two 
clocks. 

As shown in Figure 22, typically five different noise processes are employed to model clocks, 
oscillators and measurement systems. These seem to be fairly basic in nature. Figure 23 gives 
the Fourier transformation relationships between the time-domain measures and the frequency- 
domain representation, as well as the region of applicability. Using these relationships and 
going back to Figure 17, one can see both the regions of applicability (from the different slopes 
corresponding to the f values) as well as the different levels of random variations. 

Figure 24 gives the abbreviation, the name and the mathematical expression for each of these 
three time-domain measures. Their square roots are: ADEV, MDEV and TDEV, respectively. 
The first two measures are explained in detail in NlST Technical Note 3337131 and all three 



in the upcoming ITU-R Handbook. The transformation coefficients from the time-domain to 
the frequency-domain or vice-tlevsa (preserving the noise type and level) may be found in 
reference141 and for AVAR and MVAR in NIST TN 1337. TVAR = rZMod .o i (~ ) /3  has been 
shown to be a very good measure for measurement system stability, network stability, and time 
dissemination stability. TVAR was developed after the publication of NIST TN 1337. 

Note that the equations for AVAR, MVAR and TVAR in Figure 24 are all represented in terms 
of a second difference of the time deviations, x. In the case of MVAR and TVAR, the x values 
making up the second difference are each averaged over a separate, but sequentially adjacent 
interval T - rather than being a time error measurement at a point as for AVAR. The effect 
of averaging the data in an appropriate way, applies a filter in the software so that it effectively 
modulates the bandwidth of the software processor. This bandwidth modulation removes the 
ambiguity associated with AVAR; i.e. AVAR has essentially the same slope (F  = -2) value, 
for either white-noise PM or for flicker-noise PM. MVAR and TVAR can distinguish between 
white-noise PM and flicker-noise PM - having different slopes when plotted logarithmically 
versus T .  

Applications of Optimum Parameter Estimation and Prediction 

As shown in Figure 25, optimum parameter estimation means that once a model paramettr 
has been determined, the residuals around that parameter model have been minimized in a 
squared-error sense. Similarly, for prediction, the errors of prediction are minimized in a 
squared-error sense. Of course, both parameter estimation and prediction will depend upon 
the type and the level of the noise processes involved. Hence, knowing the noise type and 
level is essential for optimum parameter estimation and prediction. 

The statistical theorem given in Figure 26 is important, as well as useful and simple. In 
particular, it is useful for parameter estimation and for prediction. Since nature gives us white 
PM and white FM, this theorem is directly applicable in these cases. In addition, the long-term 
performance of most clocks may be reasonably well modeled as a random-walk FM process; 
this is sometimes called white acceleration because the second derivative of x (d2x/dt2)  has a 
white spectrum. Here again we may use the above theorem. 

Two very important examples are the following. In Figure 21 it was pointed out that white 
FM is the classical noise for most atomic clocks, and white PM is the classical noise for an 
ideal time-difference measurement system. Hence, as illustrated in Figure 27, in the presence 
of white FM, AVAR is the optimum estimator of frequency change (or instability). This is true 
since each of the average frequencies, taken over an interval T ,  is the optimum estimate of 
frequency over that interval. Comparing an optimum with an optimum causes the difference 
to be an optimum estimate of the change. AVAR then is an RMS computation of this optimal 
estimate of change over the interval r. Similar arguments hold for TVAR in the presence of 
white-noise PM making it an optimal estimate, in an RMS sense, of the change in the time 
each averaged over an interval T .  

Flicker models also are very common; they are more arduous to deal with, but filters have been 
designed that turn flicker residuals into white noise - providing the opponunity of developing 



optimum estimation and prediction procedures for I /  f type noise processes. These have only 
been partially developed because of their complexity. 

Figure 28 gives the uncertainties associated with optimum estimation for three different circum- 
stances. The first equation is an applicable model if the same clock signal is fed into both input 
ports of a time-difference measurement system. In the ideal case e ( t )  would have a white-noise 
PM spectrum with mean zero. Hence, the mean value over a data set would be the optimum 
estimate of the time-delay difference, xo, in the cable delays feeding the two input ports. The 
standard deviation of the measurements is given by U , ( T ~ ) ,  and the uncertainty in this estimate 
is given by the standard deviation of the mean, where N is the number of measurements. Such 
a model may also be appropriate if two very good atomic clocks, remote from each other, were 
being compared using the GPS common-view technique. The day-to-day measurement noise is 
often characterized by white-noise PM, and if this noise is significantly higher than the clock 
noise at T = 1 day, then the simple mean gives the optimum estimate of the time difference 
between the remote clocks as averaged over the interval 7. 

The second equation in Figure 28 would be a reasonable model if two independent clocks 
had negligible noise as compared to the measurement system's white PM level over the time 
of the measurement. This model also assumes there is no frequency drift behveen these two 
independent clocks. In this case, a linear regression provides the optimum estimate of the 
synchronization error, xo, and the syntonization error, yo, between the two clocks, since the 
residuals will have a white spectrum. The uncertainty is given at the right; notice that the 
confidence on the frequency-difference estimate improves as N-"', whereas the confidence 
on the time-difference estimate only improves as N-'I2. This is because we are estimating 
frequency in the presences of white-noise time residuals, and frequency and time are related 
by a derivative, y = dxldt. We will show later that this NT3I2 factor may be used to significant 
advantage in some frequency transfer experiments, such as with GPS and with 'ho-Way Satellite 
Time and Frequency Transfer. 

In the third equation in Figure 28, the model, for example, could be for two clocks with 
relative frequency drift between them along with having time and frequency offsets. Again, 
the clock's random noise is negligible as compared to the white-noise PM measurement noise 
over the length of the measurement. This model could also be applicable for a clock with 
intrinsic white-noise PM, such as active hydrogen masers and quartz crystal oscillators have 
in the short-term. In this case, the quadratic regression line is the best fit, because the time 
residuals, e(t), have a white spectrum. For similar arguments, the confidence of the estimate 
of the drift term improves as N-vz. That is, 42) = d2x/dtZ is being optimally estimated in the 
presence of white-noise time residuals. 

If we apply the second equation in Figure 28 to Dr. Mattison's experiment, reported in this 
conferencersl, we get some very impressive results. With data taken once a second, having 
100-picosecond white PM measurement noise, and having the satellite in view for 5 minutes, 
the uncertainty on the frequency measurement would be about 6.7 x 10-14. Now if the data 
rate could be speeded np to  a 1 ms rate, then the uncertainty becomes 2.1 x lo-'" a factor 
of 30 improvement for the period of observation. The uncertainty expression at the right of 
the second equation in (28) is equivalent to 2 M O ~ . U ~ ( T ) ,  where T is the observation interval. 



Figures 29 through 31 apply to the case where classical white-noise is predominant as for most 
atomic clocks. The first equation in Figure 29 represents the true average normalized frequency 
over the interval TO as determined from the time difference at the beginning and the end of 
the interval. Such a measurement is much like is done in a time interval counter over its gate 
time. The second equation is the definition of the average over the whole data length. Hence, 
if the first equation is substituted into the second equation, the result is the third equation. 
Therefore, the end point time-difference values yield the optimum estimate of the frequency 
in the presence of white-noise FM. The algorithm is extremely simple: the difference of the 
last point minus the first point divided by the data length. It is well to check either visually 
or statistically that neither of these two points is an outlier, which would contaminate the 
result. It is always good practice to check the data visually. Looking at the time residuals after 
subtracting the systematics is one of the most useful visual inspection techniques. 

Since it is not uncommon for people to subtract a linear regression from the phase or  time 
residuals to determine the frequency of their atomic clock from the slope thus derived, Figure 
30 is a simulation showing the degradation in this estimate as compared with the optimum. 
This figure gives the results from a Monte Carlo analysis of 100 simulations of 100 points 
each. The mean frequency from the regression line slope was 72% worse than optimum. The 
standard deviation of the frequency residuals was 8.5% worse. The simulations were derived 
from a normally distributed set with unit variance for the white-noise FM frequency residuals. 
The column denoted "Mean xo" is the average value of the synchronization term derived at the 
origin of each set and is zero by design in the optimum estimation procedure. The optimum 
value for time prediction is the last value, which is the value used in the optimum estimate of 
the frequency for the measurement period. 

USNO has 40 HP 5071A clocks. They are well modeled by the first pair of equations in 
Figure 31 for T values out to the 45 day prediction time needed to bring the UTC estimate 
forward to the current time. Using the white-noise model equation for the HP 507lA clock 
given in Figure 21, and the uncertainty relationship given at the right in (31), we obtain for the 
frequency measurement uncertainty, for T = 45 days and for 40 independent clocks, 6.4 x 10-'~. 
We previously deduced from the data an upper limit of 2.6 x 10-'"as derived from the actual 
prediction error in UTC(USN0-MC) as observed over the last half year. 

The prediction upper limit is about a factor of four worse than optimum. From the previous 
analysis, we cannot tell whether the major contributor to the instability is T A W T C  or USNO. 
It is possible that the white-noise FM model starts to break down for some of the docks for 
T values of the order of a couple of months. An other explanation for the disparity could 
be that optimum parameter estimation and prediction may not be used in the generation of 
TAUUTC. In talking to personnel at USNO, it seems that their procedure is very close to 
optimum. Regardless, the results obtained are greatly improved over what they were a feu 
years ago. 

One may notice that the expression for the uncertainty at  the right ,of the first pair of equations 
in Figure 31 is the same as the standard deviation of the mean. The second pair of equations in 
Figure 31 is the model for two clocks having relative frequency drift and where the predominant 
noisz is white FM. In this case the linear regression on the frequency is the optimum estimator, 
because the residuals around that regression line are white. The uncertainty on that drift 



estimate decreases as N - ~ / ' .  This kind of regression analysis is often used in our community, 
and is obviously very useful. 

Figure 32 considers the random-walk FM model as the predominant noise. This is often the 
model used for clocks for their long-term stability performance. The model in Figure 32 
assumes the presence of frequency drift. The second difference of the x ( t )  data has a white 
spectrum. Hence, from our statistical theorem the mean value of the second difference is an 
optimum estimator. This mean value is directly relatable to the drift as shown and which has 
an uncertainty given at the right. This uncertainty is equivalent to the standard deviation of 
the mean. 

Unfortunately, as shown in Figure 33, life is not so simple. We almost never have single 
noise processes in a data set. But a filter can almost always be designed which will give white 
residuals. It may be a complex filter. 

Figure 34 is an illustration useful to our community: the case of white PM and/or white FM 
with long-term random-walk FM. An appropriate filter may be designed to average down 
the white-noise PM andlor the white-noise FM, and then we can analyze the random-walk FM 
residuals. If the random-walk FM is the predominant noise in the long-term, as it often is, 
then a simpler algorithm for determining a near optimum estimate of the frequency drift is 
as follows. If the first, the middle, and the last time-difference points are used to compute 
the estimate of the frequency drift, D, this estimate has two distinct advantages. First, as a 
second-difference estimate it is optimum for random-walk FM. Second, the effect of the higher 
frequency noise processes (e.g. white-noise PM and white-noise FM) is diminished if the T 
for half the data length is long compared to those T values where the higher frequency noise 
processes predominate. If these higher frequency noise processes have been filtered, so much 
the better. 

In the case of white-noise FM and frequency drift a linear regression to the frequency ,gives the 
optimum estimate of the drift. But in this case, if the second-differer.:e estimator per equation 
Figure 34 were used, how much worse than optimum would it be? The uncertainty is given ill 
Figure 35, and it is only 15% wo&e than optimum. However, in the case of random-walk Fh!, 
the three-point esti,mator is optimum and the linear regression is worse by some similar factor. 

In telecommunications, very often the frequency drift of quartz oscillators as it affects the 
time-interval-error (TIE) is an important specification. Figure 36 gives a relationship between 
u,(T) = TDEV, the frequency drift, D, and the corresponding TIE. 

Figures 37 and 38 show the effect of modulation on u,(T) and on ~ ~ ( 7 ) .  In the latter case, 
a background noise of white PM is also included in the simulation. Notice that the effect of 
the modulation averages down as 117. 

If there is a need to estimate an effect due to temperature, pressure, humidity, etc., then the 
following procedure will be helpful. Suppose the clock has a uY(r) diagram something like that 
shown in Figure 39. Denote rf!,, as the averaging time where the clock reaches its flicker 
floor. Now average the frequency for this length of time with the parameter in question fixed 
at some value. Switch the parameter to some new value, allowing for settling, qnd measure the 
frequency again for an interval ifloor Switch the parameter back to its original setting, again 



allowing for settling, and measure the average frequency for the third time. Keep repeating 
the switching of the parameter setting as often as needed to get the uncertainty desired. In 
principle, the uncertainty in the size of the effect of this particular parameter on the frequency 
will decrease as 1 over the square root of the number of the independent switches. In this way, 
we are not limited by the flicker floor, and can determine the size of the effect arbitrarily well. 

Now consider optimum procedures in using some of the clocks contributing to TAUUTC. 
Figure 40 is a stability plot for 78 of the HP 5071As contributing to TAIIUTC during 1994. 
Clearly, there is not a single representative model for all of these clocks. The best possible 
stability obtainable from these clocks i given by the equation at the bottom right of Figure 
41 and represented by the 'x's. These results are reasonably modeled by the equation given: 
~ ~ ( 7 )  = 8.7 x 1 0 - ' ~ 7 - ~ / ~ ,  where T is in units of seconds. The dots are the estimated stabilities 
under the assumption that the 78 clocks are all equal; square root of the average variance 
divided by the square root of the number of clocks. These two stability plots give an upper 
and a lower bound to the actual stability one could obtain using these clocks. The circles are 
the composite stabilities for the hydrogen masers used in TAIIUTC for this same period. 

The above are only theoretical estimates since there is no clock good enough with which to 
measure this level of stability. In an effort to estimate the actual stability, a three-cornered 
hat experiment was performed between a time scale generated for each of three clock sets: 
the primary standards running as clocks, the hydrogen masers contributing to TAWTC, and 
78 HP 5071A cesium clocks analyzed in Figure 40. The two plus '+' points were the resultine 
estimated stability for the HP 5071A clocks. The T - ~ / ~  slope would indicate we are only seeing 
measurement noise and are not limited by the clocks for these T values. 

Figure 42 is the time stability, O,(T), and M o d . u Y ( r )  for several important time and/or frequency 
transfer techniques. Both can be plotted on the same graph since ~ ~ ( 7 )  = 7 M o d . a , ( ~ ) / f i .  
Most of the plots are for state-of-the-art techniques except for Loran-C, which is plotted for 
comparison purposes. 

The Two-way Satellite Time Transfer Technique has excellent short-term stability, but due to 
equipment delay variations to date it only reaches somewhat better than 1 x 10-l3 before 
these variations significantly contaminate the estimation process. In the very long-term these 
instabilities start to average down again. 

The enhanced GPS, EGPS, technique was developed to utilize the new multichannel GPS 
receivers and to over come to some degree the effects of the Selective Availability (SA) 
degradation present for the civil users of GPS. The degree to which the SA can be filtered 
away is a function of the quality of clock used with the multi-channel GPS receiver; i.e. 
quartz, rubidium or cesium. For example, if a very good quartz oscillator is properly used and 
selvoed to GPS and the SA is optimally filtered, then the short-tetvl stability will be that of 
the quartz oscillator, which is usually excellent, and the very long-telm will be that of GPS. 
The intermediate-term stability will depend on the intermediate-term stability of the quartr 
oscillator, which is not as good as a rubidium gas-cell frequency standard; and the rubidium in 
turn is not as good as a cesium-beam frequency standard for the intermediate term. 

The GPS carrier phase technique has outstanding frequency transfer capability - reaching 



about 2 x 10-'"n lo5 seconds (about one day). The data plotted here came from a comparison 
of hydrogen masers located in Goldstone, California and in Algonquin Park, Canada. The 
baseline distance is about 3.2 Mm (2,000 miles); the circumference of the Earth is about 40 Mm. 
Some 35 tracking stations were used to determine accurate orbits. Notice that the classical 
measurement noise only persists for about five minutes, then some random-walk errors start to 
come in. Notice also that the time instability averages down to below 10 ps; that is the time 
it takes a light signal to travel 3 millimeters! Clearly, Earth tides had to be included in this 
analysis. One also sees the power of these kinds of measurements to study plate tectonics for 
the Earth. 

The GPS common view (GPS CV), which has been used since 1981 and still is the best 
operational means of comparing time and frequency standards remote from each other, starts 
at T = 1 day and integrates down to below the level. This is the main means of time 
and frequency transfer for the clocks and frequency standards providing input into TAINTC. 

If we go back to the second equation in Figure 28 - remembering that the confidence of the 
estimate of frequency improves as the degrees of freedom N to the 3/2s power - one can 
think of some very exciting opportunities with the new multi-channel GPS receivers. These 
receivers are able to take one second data. If the measurement noise is white PM at a level 
of 8 ns and four satellites could always be tracked in common-view with another site, then the 
frequency transfer uncertainty would be 1.4 x 10-lG for a one day's regression analysis. This 
technique is called the Advanced Common-view approach (GPS ACV). 

Two eight-channel receivers were tested with common clock and common antenna to study 
instrumentation noise and to check the theory of the above paragraph. The results are plotted 
in Figure 42. A complex digital filter was developed to take advantage of all the degrees of 
freedom while increasing the averaging time to ten seconds in order to reduce the data rate. 
This digital filter explains the little hump at about 30 seconds. The curve generally follows the 
white-noise PM power-law spectral model with the data averaging as 7-'12 down to a level of 
about 70 picoseconds. This data is taken from the accompanying payerlll, and is thanks to Dr. 
Robin Giffard. We next need to study the performance with separate antennas, as a function 
of temperature, and with the receivers located at sites remote to each other. The effects c,f 
the ionosphere, the troposphere and multipath can be measured and/or averaged and can be 
driven below the nanosecond level. Much work is yet to be done, but the GPS ACV technique 
appears to have the potential to be very practical and useful. 

Notice the effects of diurnal and annual variations in the Loran-C stability. As better and 
better standards are being compared, it may be that in some cases temperature control will be 
necessary to avoid such variations as they may occur in other techniques as well. As we move 
time and frequency metrology forward, it is always well to keep in mind the basic concepts 
and methodologies for parameter estimation and prediction. Those presented here are not a 
complete set, but it is hoped that they will be useful to those interested in utilizing the powerful 
time and frequency resources and tools we now have available within our community. 
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Frequency counts the n u m h  
(from an atomic resonance) IS ABSOLUTE; 
hence is the basis of the definition of "the seconp." 

n 
Time n 5 - 
(clock reading) is an artifact of man; 

- 
we define it to be what we want it to be. Fast Electronic 
IT IS NOT ABSOLUTE. Counter 

Time is an artifact A: an oscillator + a counter 



Operator Interference 
Shock and Vibration 
Supply Voltage 
Magnetic Field 

" Temperature 
Pressure 
Humidity 
Load 
Etc. 

I I I All clocks affected by  environment 
I I 

Time (in practice) 
the apparent reading of a clock 

Synchronization 
7 two or more clocks have the same apparent time 
e = " 0. Syntonization 

two or more clocks have the same apparent rate 

Simultaneity 
two or more events occur at the same moment 
(does not require a clock) 

I Time is a definit ion 



''(0 -VO Dlmensionless 
~ ( t )  = v0 Normalized Freq. 

Sp ( t )  x(t) = - 
n 27C Vo 

Time Residual 

I 

V(t) = sin @(t) 
= Ig' sin Znv(t)t 

G' = dx (t) 
2 - Then y(t) = = i ( t )  a - 6' . =  

I 2 

x(t) =l y(t> dd V) And 

Measures of departure 1 i 

~ ( t )  = x0 + y,t + %Dt  + e(t) We cannot measure the tlme of a clock agalnst absolute time 

r because absolute time does not exlst. I !  All the rest! We can measure the time d~flerence between two clocks 
Frequency Drift w~th great preclslon 

?I 
F Syntonizatlon Error (r=O) n 
n' - 
N -- Synchronization error (t=O) - 

0 

SubtracMng first three terms from data, then x(t) = €(I) 

Time is  not absolute 



OFrquency Accumy: 
The degree of conformity with a srandard ar a definition. 

.Frequency lnstablllty: 
Change, typically averaged over an interval, r, with respect to 

- another frequency. 
-. 

Time Accuracy: y(1 - The degree of conformity with UTC or some agreed upon timcsqle. 2 
111 - 

normafiled frequency enor vs. time time enor vs, time 

frequency offset 

?) I anme lnslablllty: 
Change, in resldual readings, typically averaged over a Ory drlfr I \ 

negrtlve frequency drlft 
with respect to nominal or other av raged interval($). 7 

y(1) X ( I )  4,,(~) 0,fi.l Mod. 4> (U UTC i 

10 
, .,., . ., -.t. . .. - . . .a. . .... L, 

. .ul * .,... - . . , , I  . I".,, 
) .,-. ...,....#-. 1.11, .  m.." 

7. 1 

4 
0 1 

1 *  
m. ,. ) I . . .  . . .  . _.m 

for clockloscillator SY(f)t S,(fl 

r! 
oy (r) Mod. Cry (2) 

rn 
5 - 
P 

for measurement &(f), SPU) 
system or network a, (r), Mod. a, (2) 

oy (T), ox (2)  optimum for classical noises 



'L'1111K ACC'L. KAC.1' 

Integrallng lnese ll~ps generates a random-walk PrOCeSS: 
inreor 2 one nep lowaia) 
!rar!5 me step DaCNraro; 

Atler N lltps 01 a coln, WIII oe dp away lrorn tne orlgln 
l eosem~e rms, 

e 
a Slnce .V = dx/dr, 

Takng a l~rst difference ol a random-aa/k process turns it 
inlo a wnlle process. 

... and random walks 

.,.TOOIW W I".-" OII.I?X IT*. CLOC9 FOR*", 
(YL CLWn81 

0 .,a I D  0 0  I 0  I .  I 0  . o  I S  LO .. 
Log (r) ,  seconds 

FIGUnE 2 
Stab#llly n a n g e ~  01 V J I I O U ~  rretquency Slandards 



+2 White PM 

+ 1 Flicker PM 

0 N1>ite FM 

-1 Flicker FM 
TI 

$' -2 Random Walk FM 2 
N 

for clocks: (oscillators) white FM ; 
-1s /Z 

O-"(T) = B x l O  7- 

for measurement: white PM 

-2 -4 R.W. FM 

1 a p Tlme C49vlatlons 
+2 0 White PM 

n + I  -1 Flicker PM 
m 
6 
N 0 -2 R.W. PM or 
N White FM 

'l *3 4 Flicker FM 

3 
? 
i: 
P 

. 
EXPRESSION 

o;~,, . furl,, 

. L<[&~'>~> 
l.' 

M ~ ; W  . + < ~ a b  
f r  

ABBREVIATION 

AVAR 
' 

MVAR 

i &,, . :7,arj,.. 
TVAR ( TIME VARIANCE 1 

NAME 

ALLAN VARIANCE 

I 
MOD~FIED 

ALLAN VARIANCE 



7 Optimum means parameter estimation with 
minlmum squared error residuals 

Goal: to minimize errors for parameter estimation 
andlor for time and frequency prediction. 

Depends on noise type 1 

1 Opt imum est imate 

The optimum estimate of the mean of a process wfth 
a white-noise spectrum is the simple mean. 

2 lvaturally we have: 2 
a White PM, White FM, 
N 

R.W. FM (white acceleration, x(t)) 

Flicker models are also very common. 

I I 

I Seek for white residuals 



Given: Discrete x(i) values spaced To from a time difference series 

I Optimum estimate I 

-- -. -- ----- -- 
! 

1 

/ Optimum estimate 
-. I_.-.- -_ - .--____- 

x ( i ) - x ( i - I )  A X ( ~ )  
Then y(i) = - - 

20 20 

21 rn N 
Average 2 2 y( i l  Simple Mean 
Frequency = N 

w 

- - x(N) - ~ ( 0 )  Optlrnurn Estimate 

N% for whlte FM 
I I Optimum based on simple mean I 

GIVEN: CLASSICAL WHITE NOISE IFM 
(as from Cs or Rb) 

THIS IS THE SAME AS RANDOM WALK PM 
(100 simulations of 100 paints) 

Difference between end-point and regression 
for determining the frequency and time 

Mean x, 
Freq. 



linear regression to: 

Y 
m 
E 

~ ( n )  =yo + DnZo 
or using 3-point A x :  m 

Any given time series may be modeled by more than 
one Noise Model 

n There will always be a filter which will produce 
G' 
= white residuals z 
W 
W 

L"9 % ( T )  
White PM and White FM andlor R. W. FM 

. . Average whlte PM 
-- I I m Then analyze residuals 
E: P 

1 1  5 - C --. 2- - _n 
White FM and R. W. FM 

h, Average white FM 
0 Then analyze residuals 

C 
Optimum Freq. DRIFT estimation in both cases 

0 

s D = 'N - 2 x ~ ~ 2  + , N 
x9 T2 T =  ,-z, 
h 
9 w 

E 
7 

Optimum and near optimum i 

Effective estimate for most clocks i 

Optimum may be complex filter 

I 
, 



G i m  W h i t e  FM and flicker-floor: 
To Measure an environmental ilrady-state 
effect, hold the parameter con5tant and 
average the frequency for an interval such that 
the 0y(7) curve starts changlng Iron1 r ' "  
toward a flattening (flicker floor) Then 
change the envtronmenral parameter be~ng  
evaluated and repeat the integrat~on [(me to 
measure the frequency change i l f  "N' 1s the 
number of changes back and forth. then the 
confidence on the frequency cliyngc I S  thr 
Z e  of o,(r,,,,) times I h''N 

Figure 38 
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Questions and Answers 

MICHAEL GARVEY (FREQUENCY AND TIME SYSTEMS): You showed the slide 
in which you were trying to pull an environmental sensitivity out of the noise; and you said 
"Wait until you hit the flicker floor." Is there any reason not to modulate the environmental 
effect at a faster rate? 

DAVID ALLAN (ALLAN'S TIME): You have to wait for settllng, so that increases the 
amount of time it takes to do the experiment. 

MICHAEL GARVEY (FREQUENCY AND TIME SYSTEMS): I know. But if I wait 
for the flicker floor in a cesium standard, I might wait weeks. 

DAVID ALLAN (ALLAN'S TIME): Yes, and if you can't hold the environmental parameter 
stable for that long, you should change it more often. For cesium and rubidium clocks the 
frequency averages as 7-'12. If you can hold the parameter constant, then you're much better 
off to let the clock do the averaging because of the delay associated with settling for each 
switching time. If the parameter can be held sufficiently constant, then average all the way 
down to the flicker floor. 

MICHAEL GARVEY (FREQUENCY AND TIME SYSTEMS): Rather than wait for 
the square root of N in the denominator. 

DAVID ALLAN (ALLAN'S TIME): Yes, you buy information at the same rate except for 
the settling time.; It is a trade-off between the parameter's instability and the length of the 
settling time. In the case of humidity effects in quartz, for example, the settling time can be 
very long. 




